Cosa sono le armoniche triplen?


Migliore risposta

Sono armoniche la cui frequenza è un dispari multiplo di la frequenza della terza armonica.

Ecco come determinare quali armoniche sono armoniche triplen:

  1. Supponiamo che la frequenza ciclica fondamentale del segnale periodico non sinusoidale sia f.
  2. Quindi, la frequenza della terza armonica è 3f.
  3. Quindi, le armoniche la cui frequenza è un multiplo della frequenza della terza armonica, hanno una frequenza di 3f × k dove k è un numero intero positivo compreso tra 1 (non 0) e infinito. In altre parole, la loro frequenza è 3f, 6f, 9f, 12f, 15f, 18f, 21f, ecc.
  4. Infine, rimuovi dallelenco precedente i multipli pari. In questo modo si determinano le armoniche la cui frequenza è un multiplo dispari della frequenza della terza armonica (in altre parole, le armoniche triplen), hanno una frequenza di 3f, 9f, 15f, 21f, ecc.

Altro generalmente, utilizzando Wolfram Alpha , possiamo trovare unespressione generale per la frequenza delle armoniche triplen:

3 (2k-1) f \ tag * {}

dove k \ in \ N.

La frequenza ciclica delle armoniche sono scritte come f\_n o f\_h, e sono uguali a n f\_0 o h f\_0, dove n o h sono numeri interi positivi e f\_0 è la frequenza ciclica fondamentale del segnale distorto. Allo stesso modo, le frequenze angolari delle armoniche sono scritte come \ omega\_n o \ omega\_h, e sono uguali a n \ omega\_0 o h \ omega\_0, dove \ omega\_0 è la frequenza angolare fondamentale del segnale distorto e ancora una volta n o h sono positive interi. Usando questa notazione, per le armoniche triplen abbiamo:

\ boxed {h = 3 (2k-1)} \ text {(triplenarmoniche)} \ tag * {}

E per armoniche pari, armoniche dispari e armoniche che non sono armoniche pari né armoniche triplen:

\ boxed {h = 2k} \ text {(even harmics)} \ tag * {}

\ boxed {h = 2k-1} \ text {(dispari armoniche)} \ tag * {}

\ boxed {h = \ frac {1} {2} (6k + (-1 ) ^ k – 3)} \ text {(armoniche che non sono pari né triplen)} \ tag * {}

Segnali (o forme donda) che hanno simmetria a semionda, che significa la metà negativa il ciclo è il negativo del semiciclo positivo, anche le armoniche sono zero e anche loffset CC è zero, quindi hanno solo armoniche dispari. In molti carichi non lineari, le forme donda di solito hanno simmetria a semionda e quindi hanno solo armoniche dispari .

Un esempio di carichi non lineari che hanno solo armoniche che non sono nemmeno armoniche né triplette, è un controllore di tensione CA trifase, come ho mostrato qui.

Risposta

Tr iplen Harmonics – Le armoniche triplen sono definite come i multipli dispari della 3a armonica (es. 3 °, 9 °, 15 °, 21 ° ecc.). Le armoniche Triplen sono di particolare interesse perché sono armoniche di sequenza zero, a differenza della fondamentale, che è la sequenza positiva. La conseguenza di questo fatto è che lentità di queste correnti sulle 3 fasi è additiva nel neutro. Ciò può portare a correnti molto grandi che circolano nel neutro e, a meno che il neutro non sia sufficientemente sovradimensionato, può presentare un rischio di incendio. Queste correnti possono circolare anche nel trasformatore provocando anche lì un notevole surriscaldamento. Gli alimentatori monofase per apparecchiature come reattori elettronici e PC sono la fonte più significativa di armoniche Triplen.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *