Risposta migliore
La velocità terminale è la velocità che un corpo in caduta libera raggiunge in un fluido. Può essere determinato considerando due fatti: laccelerazione di gravità e la forza di resistenza che aumenta con la velocità. Quindi in aria la velocità aumenta fino a quando la forza di trascinamento è uguale al peso: in queste condizioni non è disponibile alcuna forza netta e laccelerazione diventa 0: velocità terminale raggiunta.
In aria cè un termine trascurato: la forza di galleggiamento ( Legge di Archimede) perché la sua influenza è molto piccola ma in acqua non si può trascurare questo dato che la densità dellacqua è quasi 1000 volte quella dellaria e la forza di Archimede 1000 volte di più.
Quindi se lasci cadere un corpo in acqua, la forza che lo spinge verso il basso è il suo peso meno la forza di galleggiamento. La seconda legge di Newton F = m a può essere utilizzata considerando che la forza non è solo il peso ma il peso meno la forza di Archimede. Il peso è normalmente W = mg = \ rho V g (dove \ rho è la densità del corpo e V il suo volume), la forza di Archimede è uguale al peso di un uguale volume dacqua quindi A = \ rho\_W V g, dove \ rho\_W è la densità dellacqua.
Tutto considerato, la seconda legge di Newton sarà scritta come (\ rho – \ rho\_W) V g = \ rho V a quindi a = {{\ rho – \ rho\_W} \ over {\ rho}} g = (1 – {\ rho\_W \ over \ rho\_A}) g e questo ha perfettamente senso perché, se la densità del corpo è uguale a quella dellacqua, galleggia e in queste condizioni a = 0 come dovrebbe.
Dopo la fase iniziale, il corpo più denso dellacqua inizia a cadere con una piccola accelerazione ma tuttavia la velocità aumenta così come la forza di resistenza. La velocità terminale sarà la velocità alla quale la forza di resistenza è uguale alla forza verticale, normalmente molto molto più bassa che nellaria.
Come puoi vedere ci sono somiglianze con limportante (fondamentale) deviazione che consiste nel prendere in considerazione account Legge di Archimede.
Risposta
Teoricamente no, ma praticamente sì. In un ambiente vicino allideale in cui il coefficiente di resistenza è costante, lequazione rimane la stessa. In un ambiente realistico inizierai ad avere più turbolenza in un liquido più denso e viscoso che porta a comportamenti instabili e tutti i tipi di effetti strani che si traducono in un modo meno chiaro e più basato su tabelle per calcolare la velocità terminale effettiva