Qual é a fórmula de cos (AB)?


Melhor resposta

Olá,

Lembre-se apenas destes dois princípios básicos:

sin (A + B) = sinAcosB + cosAsinB ( Lembre-se )

Então, você pode encontrar facilmente sin (AB).

sin (AB) = sin (A + (- B)) = sinAcos (-B) + cosAsin (-B) = sinAcosB + cosA (-sinB) {desde;

cos (-X) = cosX

sin (-X) = sin (X)}

sin (AB) = sinAcosB- cosAsinB

cos (A + B) = cosAcosB-sinAsinB ( Lembre-se )

cos ( AB) = cos (A + (- B)) = cosAcos (-B) -sinAsin (-B) = cosAcosB-sinA (-sinB)

cos (AB) = cosAcosB + sinAsinB

Boa aprendizagem!

Resposta

\ text {Os dois lados serão iguais se suas diferenças = 0. Isso é}

\ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \ , B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right) = 0

\ text {L eft hand side}

\ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \ , B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right)

= \ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} – \ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} \ right) + \ left (\ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} – \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right)

= \ cos \, A \ left (\ dfrac {1} {\ sin \ , A + \ cos \, B} – \ dfrac {1} {\ sin \, A – \ cos \, B} \ right) + \ cos \, B \ left (\ dfrac {1} {\ sin \, B – \ cos \, A} – \ dfrac {1} {\ sin \, B + \ cos \, A} \ right)

= \ cos \, A \ left (\ dfrac {- 2 \ cos \, B} {(\ sin \, A + \ cos \, B) (\ sin \, A – \ cos \, B} \ right) + \ cos \, B \ left (\ dfrac {2 \ cos \, A} {(\ sin \, B + \ cos \, A) (\ sin \, B – \ cos \, A} \ right)

= \ dfrac {-2 \ cos \, A \ cos \, B} {\ sin ^ 2 \, A – \ cos ^ 2 \, B} + \ dfrac {2 \ cos \, A \ cos \, B} {\ sin ^ 2 \, B – \ cos ^ 2 \, A}

= – 2 \ cos \, A \ cos \, B \ left (\ dfrac {1} {\ sin ^ 2 \, A – \ cos ^ 2 \, B} – \ dfrac {1} {\ sin ^ 2 \, B – \ cos ^ 2 \, A} \ right)

= -2 \ cos \, A \ cos \, B \ left (\ dfrac {\ sin ^ 2 \, B – \ cos ^ 2 \, A – \ sin ^ 2 \, A + \ cos ^ 2 \, B} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) (\ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ direita)

= -2 \ cos \, A \ cos \, B \ esquerda (\ dfrac {\ sin ^ 2 \, B + \ cos ^ 2 \, B – (\ cos ^ 2 \ , A + \ sin ^ 2 \, A)} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) (\ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ right )

= -2 \ cos \, A \ cos \, B \ left (\ dfrac {1-1} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) ( \ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ right)

= 0

\ implica \ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right) = 0

\ implica \ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ right) = \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right)

\ text {QED}

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios marcados com *