Wie wird der Schwerpunkt eines rechtwinkligen Dreiecks berechnet?


Beste Antwort

Erstens ist der Schwerpunkt ein Punkt der Parallelität des Dreiecks. Dies ist der Punkt, an dem sich alle drei Mediane schneiden.

Ein gleichseitiges Dreieck ist ein Dreieck, dessen drei Seiten alle dieselbe Länge haben. Sie sind das einzige reguläre Polygon mit drei Seiten und erscheinen in einer Vielzahl von Kontexten, sowohl in der Grundgeometrie als auch in fortgeschritteneren Themen wie der Geometrie komplexer Zahlen und geometrischen Ungleichungen.

Grundlegende Eigenschaften

Da das gleichseitige Dreieck in gewissem Sinne das ist einfachstes Polygon, viele typischerweise wichtige Eigenschaften sind leicht berechenbar. Zum Beispiel haben wir für ein gleichseitiges Dreieck mit Seitenlänge:

  • Höhe, Median, Winkelhalbierende und die senkrechte Winkelhalbierende der Seiten, alle dieselbe, einzelne Linie.
  • Diese einzelne Linie ist auch die Symmetrielinie des Dreiecks.
  • Alle drei der oben genannten einzelnen Linien haben die gleiche Länge von.
  • Die Fläche eines gleichseitigen Dreiecks ist.
  • Orthozentrum, Zirkumzentrum, Incenter, Schwerpunkt und Neun-Punkte-Zentrum sind alle der gleiche Punkt. Die Euler-Linie degeneriert zu einem einzigen Punkt.
  • Der Umfang eines gleichseitigen Dreiecks ist. Beachten Sie, dass dies die Länge einer Höhe ist, da jede Höhe auch ein Median des Dreiecks ist.
  • Der Inradius eines gleichseitigen Dreiecks ist. Beachten Sie, dass Inradius die Länge einer Höhe ist, da jede Höhe auch ein Median des Dreiecks ist. Inradius ist auch die Länge eines Zirkumradius.

Schließlich ist der Schwerpunkt von den Ecken des Dreiecks gleich weit entfernt.

Weitere Informationen finden Sie auch unter unter Video.

Antwort

DankeA2A,

Erstens ist der Schwerpunkt ein Punkt der Parallelität des Dreiecks. Dies ist der Punkt, an dem sich alle drei Mediane schneiden.

Ein gleichseitiges Dreieck ist ein Dreieck, dessen drei Seiten alle dieselbe Länge haben. Sie sind das einzige reguläre Polygon mit drei Seiten und erscheinen in einer Vielzahl von Kontexten in beiden Grundgeometrie und fortgeschrittenere Themen wie komplexe Zahlengeometrie und geometrische Ungleichungen.

Grundlegende Eigenschaften

Da das gleichseitige Dreieck in gewissem Sinne das einfachste Polygon ist Viele typischerweise wichtige Eigenschaften sind leicht berechenbar. Zum Beispiel haben wir für ein gleichseitiges Dreieck mit der Seitenlänge

:

  • Höhe, Median, Winkelhalbierende und die senkrechte Winkelhalbierende der Seiten, alle dieselbe einzelne Linie .
  • Diese einzelne Linie ist auch die Linie der Symmetrielinie des Dreiecks.
  • Alle drei der Die oben erwähnte einzelne Linie hat die gleiche Länge von.
  • Die Fläche eines gleichseitigen Dreiecks beträgt.
  • Das Orthozentrum , Umkreiszentrum , Incenter , Schwerpunkt und Neun-Punkte-Zentrum sind alle der gleiche Punkt. Die Euler-Linie degeneriert zu einem einzelnen Punkt.
  • Der Circumradius eines gleichseitigen Dreiecks ist. Beachten Sie, dass dies die Länge einer Höhe ist, da jede Höhe auch ein Median des Dreiecks ist.
  • Der Inradius eines gleichseitigen Dreiecks ist. Beachten Sie, dass Inradius die Länge einer Höhe ist, da jede Höhe auch ein Median des Dreiecks ist. Inradius ist auch die Länge eines Zirkumradius.

Schließlich ist der Schwerpunkt gleich weit von den Ecken des Triabgles entfernt.

Mit freundlichen Grüßen !!!!

Datenquelle: GOOGLE

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.