Nejlepší odpověď
Když píšeme cos (x), mohli bychom vlastně rozumět kteroukoli ze dvou standardních trigonometrických funkcí, které se liší od navzájem, ale které jsou matoucí, psány pomocí symbolů.
První funkce, cos (x), je kosinová funkce, kde x je v stupňů , 360 stupňů je počet stupňů potřebných k dokončení úplné rotace kolem kruhu. Zde cos (0) = 1, cos (90) = 0 a cos (180) = -1.
Druhá funkce, cos (x), je kosinová funkce, kde x je v radiány , 2 \ pi je počet radiánů potřebných k dokončení úplné rotace kolem kruhu. Zde cos (0) = 1, cos (\ pi / 2) = 0 a cos (\ pi) = -1.
Jak můžete vidět, dvě funkce cos (x) jsou v zásadě stejné, až na rozdílné škálování vstupní proměnné x. Je trochu trapné a někdy matoucí mít dvě funkce sdílející stejný název, ale zde to stojí za to, protože je často užitečné zabývat se tituly a jindy je užitečnější zabývat se radiány. Volně řečeno, stupně jsou užitečné pro úhly a pro mnoho praktických použití, zatímco radiány jsou dobré pro matematické identity a důkazy a pro obvody kruhu (obvod kruhu s poloměrem 1 je 2 \ pi, nebo vzdálenost procházející jednou celou procházkou kolem kruh).
Existují také dva standardní typy funkcí pro sin (x), tan (x) a další trigonometrické funkce. Někdy je třeba se podívat na kontext, ve kterém se tyto funkce objevují, abyste zjistili, jaký typ funkce se používá: na základě stupně nebo na radiánu.
Odpovědět
V trigonometrii π = 180 °.
Se znalostmi karteziánského systému se dělí na:
I kvadrant (+, +), (0 ° až 90 °)
II. kvadrant (-, +), (90 ° až 180 °)
III. kvadrant (-, -), (180 ° až 270 °)
IV. kvadrant (+ , -), (270 ° až 360 °)
Protože cos = sousední / přepona,
Kosinus je maximální, když je theta 0 °,
cos 0 ° = 1
Kosinus je minimální, když je theta,
90 °, cos90 ° = 0
Je zajímavé vědět, že kosinus se stává nižší než minimální hodnota, když theta se rovná 180.
Cos 180 = -1,
Všimněte si, že 0 ° leží v I kvadrantu, proto cos0 ° = 1
Jak se pohybujeme zpět směrem doleva na kartézské rovině dostaneme II kvadrant, ve kterém leží 180 °.
Osa X v kartézské rovině se souřadnicemi.
(-1,0) Cos180 ° ————— (0,0) ———— cos0 ° (1,0)