Hvad er formlen for cos (AB)?


Bedste svar

Hej der,

Husk bare disse to grundlæggende:

sin (A + B) = sinAcosB + cosAsinB ( Husk )

Derefter kan du let finde synd (AB).

sin (AB) = sin (A + (- B)) = sinAcos (-B) + cosAsin (-B) = sinAcosB + cosA (-sinB) {siden;

cos (-X) = cosX

sin (-X) = sin (X)}

sin (AB) = sinAcosB- cosAsinB

cos (A + B) = cosAcosB-sinAsinB ( Husk )

cos ( AB) = cos (A + (- B)) = cosAcos (-B) -sinAsin (-B) = cosAcosB-sinA (-sinB)

cos (AB) = cosAcosB + sinAsinB

Glad læring!

Svar

\ text {De to sider vil være ens, hvis deres forskel = 0. Det er}

\ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \ , B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right) = 0

\ text {L eft håndside}

\ left (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \ , B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ højre)

= \ venstre (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} – \ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} \ højre) + \ venstre (\ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} – \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right)

= \ cos \, A \ left (\ dfrac {1} {\ sin \ , A + \ cos \, B} – \ dfrac {1} {\ sin \, A – \ cos \, B} \ højre) + \ cos \, B \ venstre (\ dfrac {1} {\ sin \, B – \ cos \, A} – \ dfrac {1} {\ sin \, B + \ cos \, A} \ højre)

= \ cos \, A \ venstre (\ dfrac {- 2 \ cos \, B} {(\ sin \, A + \ cos \, B) (\ sin \, A – \ cos \, B} \ højre) + \ cos \, B \ venstre (\ dfrac {2 \ cos \, A} {(\ sin \, B + \ cos \, A) (\ sin \, B – \ cos \, A} \ højre)

= \ dfrac {-2 \ cos \, A \ cos \, B} {\ sin ^ 2 \, A – \ cos ^ 2 \, B} + \ dfrac {2 \ cos \, A \ cos \, B} {\ sin ^ 2 \, B – \ cos ^ 2 \, A}

= – 2 \ cos \, A \ cos \, B \ left (\ dfrac {1} {\ sin ^ 2 \, A – \ cos ^ 2 \, B} – \ dfrac {1} {\ sin ^ 2 \, B – \ cos ^ 2 \, A} \ højre)

= -2 \ cos \, A \ cos \, B \ venstre (\ dfrac {\ sin ^ 2 \, B – \ cos ^ 2 \, A – \ sin ^ 2 \, A + \ cos ^ 2 \, B} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) (\ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ højre)

= -2 \ cos \, A \ cos \, B \ venstre (\ dfrac {\ sin ^ 2 \, B + \ cos ^ 2 \, B – (\ cos ^ 2 \ , A + \ sin ^ 2 \, A)} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) (\ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ højre )

= -2 \ cos \, A \ cos \, B \ left (\ dfrac {1-1} {(\ sin ^ 2 \, A – \ cos ^ 2 \, B) ( \ sin ^ 2 \, B – \ cos ^ 2 \, A)} \ højre)

= 0

\ antyder \ venstre (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ right) – \ left (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ right) = 0

\ antyder \ venstre (\ dfrac {\ cos \, A} {\ sin \, A + \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B – \ cos \, A} \ højre) = \ venstre (\ dfrac {\ cos \, A} {\ sin \, A – \ cos \, B} + \ dfrac {\ cos \, B} {\ sin \, B + \ cos \, A} \ højre)

\ tekst {QED}

Skriv et svar

Din e-mailadresse vil ikke blive publiceret. Krævede felter er markeret med *